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Abstract 

This article deals with the development of a new 
technique, RAGA (real-atom grid approximation), 
for crystal structure analysis in the initial and inter- 
mediate stages. It is particularly suited to equal-atom 
structures of non-centrosymmetric crystals, and 
especially those of the lowest symmetry P1, which 
are the most difficult to solve by conventional 
methods. The electron-density distribution is 
approximated by a set of atoms, all having the same 
form factor, but variable 'masses', mi, over a grid 
forming a sublattice of the unit cell. In the associated 
computer program RAGA, the subroutine GRLS, for 
grid least-squares refinement, reduces the R value 
between the actual F structure and the approximated 
G structure, thus leading to a continuous sequence 
of structures with smaller and smaller R values. The 
quantities used are all in real space, although the 
refinement makes use of the Fourier transforms of 
the two structures F and G. It starts with a low 
resolution of the order of one third of the largest 
unit-cell dimension with a large temperature factor 
in order to wipe out intensities of reflections beyond 
this order of resolution, and proceeds in stages to 
higher resolutions, reducing the value of B in the 
process, and this leads to electron-density informa- 
tion at a resolution of twice this order. A two- 
dimensional example of an equal-atom structure with 
symmetry P1 is given, all atoms of which could be 
developed starting from a completely fiat background 
as input. RAGA can also be used for the intermediate 
stages of further refinement in which atoms at 
unknown atomic sites can be developed using infor- 
mation about the known atomic sites. RAGA thus 
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has the potential to be developed as a valuable addi- 
tional tool in the armoury of direct methods. 

Genesis and principles 

In X-ray crystallography, the structure factors 
F(hkl) = IFI exp (ia) of the reflections hkl are the 
Fourier coefficients of the electron-density function 
p(xyz) over the unit cell. Since only the intensities 
I(hkl) = [F(hkl)[2 are available, the standard methods 
of proceeding from I(hkl) to p(xyz) are based on the 
determination of the phases a(hkl) by some suitable 
method, either of an experimental or of a theoretical 
nature. [For a brief account, see Chapters 3 and 4 of 
Dunitz (1979) and, for an extensive survey see 
Schenk, Wilson & Parthasarathy (1987).]. The theory 
behind the experimental techniques, such as the use 
of the presence of heavy atoms, of isomorphous crys- 
tals and of anomalous-dispersion data, is dealt with 
from a unified point of view in Ramachandran & 
Srinivasan (1970). The theoretical techniques behind 
ab initio phase determination for non-centrosym- 
metric crystals are mostly based on the well known 
tangent formula, which has been expressed as an 
algorithm by Main, Lessinger, Woolfson, Germain & 
Declercq (1977). Fourier techniques and direct 
methods have been combined by Beurskens et al. 
(1983) in the form of the computer program DIRDIF. 

It is usually only in the final stages of refinement 
that a least-squares procedure for improving the fit 
with intensity data is applied for obtaining more 
accurate coordinates of the atoms in the structure. 
Among the theoretical methods, the direct methods 
are the ones most widely used for the initial stages 
of phase determination for non-centrosymmetric 
crystals, particularly for equal-atom structures. They 
are also the most difficult to solve, particularly in the 
case of crystal structures belonging to the space group 
of lowest symmetry, P1. 
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It occurred to the author that it should be possible 
to apply the least-squares procedure directly to the 
input data IF(H)I ( H =  hkl) and obtain the atomic 
coordinates by a successive series of least-squares 
refinements. This was first done in a study made in 
1976 of the structure of a cyclic hexapeptide, cyclo- 
(-Gly-Tyr-Gly-)2, crystallizing in space group P1 
(Ramachandran & Shamala, 1976). The approximate 
coordinates of the atoms were obtained from 
molecular-packing considerations, and these were 
refined by least squares from a resolution of the order 
of 2 A to a final resolution of 0.7 A, reducing the R 
value from about 0.6 to 0.05 in the process. An 
interesting observation was made here; the refinement 
sequence only proceeded smoothly (even when the 
input structure was reasonably good) if, in the initial 
stages, the 'resolution' (dres= lower limit of d values 
of reflections hkl used in the refinement) was initially 
made large and then reduced step by step in succeed- 
ing stages of refinement. 

The present study is based on a similar approach, 
and is also particularly applicable to equal-atom 
structures in the space group P1. However, it is a 
completely general one in which no assumptions are 
made about the nature of the molecule, its shape or 
packing arrangement, and only the structure-factor 
data IF(hkl) I are utilized to obtain the electron- 
density diagram at a reasonable resolution (of the 
order of 15 to 20% of the unit-cell dimension), in 
successive stages by applying least-squares formulae 
directly to the data without any determination of 
phases (Ramachandran, Thanaraj, Rajan & 
Varughese, 1983). This has been achieved by rep- 
resenting the electron density p(r) as the sum of 
functions of a small number (/max) of parameters 
whose values are successively refined in the least- 
squares cycles. Thus, the real electron-density distri- 
bution p(xyz) of the crystal is approximated by a set 
of fictitious grid atoms, all of the same type, but 
having (variable) masses mi, located at the grid points 
i ¢~ (ili2i3), forming a sublattice consisting of I~I213 
(=/max) grid points in the unit cell. Thus, 

p(xyz)=~, mip l (x - i l / I i , y - - i2 / I2 ,  z- i3/I3)  ( la)  
i 

where 

i1=0 to / t - l ,  i2=0 to I2 -1 ,  i3=0 to / 3 -1 ,  (lb) 

i -  1 to I1, I2,/3. 

Then, the structure factors G(hkl) in this approxi- 
mation are given by 

G(hkl)=~, mif~[(sin 0)/A] exp {-B[(sin 0)IX] 2} 
i 

x exp [-27ri( hi~/ Ii + ki2/ I2 + li3/ I3)]. (2) 

Here, ~[(s in  0)/,~] is the atomic scattering factor 
of a standard grid atom with mi = 1, and B is the 
temperature factor empIoyed, which is made large in 

the initial stages of refinement to broaden the grid 
atoms so as to avoid termination errors when the 
resolution is poor. It was very soon found that the 
choice of such a large B value for both F(hkl) and 
G(hkl) is itself an excellent method of effectively 
reducing the degree of resolution without incurring 
termination errors, and this was adopted as the essen- 
tial basis of the theoretical formulae and practical 
algorithm described below. In order to make the grid 
structure compatible with the real structure, a tem- 
perature factor with the same B value (isotropic, of 
the order of 10 to 30 A 2 for cell dimensions of the 
order of 6 A) is also applied to the input F(hkl) data. 
We shall denote these modified values obtained after 
the application of an appropriate artificial tem- 
perature factor B by IF(H)] and shall employ them 
for all refinement cycles. 

We then minimize the R value between ]F(hkl)] 
and ]G(hkl)l with the same temperature factor B for 
both, as given by (3), by standard least-squares pro- 
cedures to obtain the best grid approximation to the 
crystal structure corresponding to the given data. 

R = Y~ I AF(H)I/E IF(H)I, 

I AF(H)I = II F(H) I -  I G(H)II. 
(3) 

The algorithmic procedures developed for this pur- 
pose, as described below, have been found to be 
remarkably successful. In fact, starting from an input 
structure as devoid of information as a fiat one with 
mi being the same for all grid atoms, the real atoms 
of a simple non-centrosymmetric two-dimensional 
structure could be developed in less than 12 cycles 
of least squares with 57 reflections for a 5 x 5 grid. 
With the artificial temperature factor B coming down 
from 30 to 10/~2 in three stages (for a -~ b -~ 6 ~) ,  the 
R value dropped from 0.50 to the range 0.15-0.20 
(see Table 1 and remarks below). The basic theory 
of this and its algorithmic implementation are briefly 
summarized below. 

Thus, unlike all the orthodox techniques in crystal- 
lography, in which the solution of the crystal structure 
is based on operations carried out in Fourier space, 
in our method, all operations are carded out in the 
real space of the crystal lattice, employing a grid 
approximation of real atoms - hence the name RAGA, 
standing for 'real-atom grid approximation'. 

Basic equations and algorithm 

The equations given below follow the pattern in a 
study made in 1983 which was written in the form of 
a mimeographed report (Ramachandran et al., 1983), 
copies of which are available from the author. It was 
also shown therein that equations (9) below have the 
property of reducing the R value under a wide variety 
of circumstances, but for various reasons these could 



G. N. RAMACHANDRAN 361 

~ 6 6 6 6  

~ 6 6 6 ~  

o o o o  

o ~ g  

-- 6 6 6 6  

" 6 6 6 6  

N N ~ N  
-- 6 6 6 6  

- -  6 6 6 6  

m e~ 

e , s s e  

N , ~  - 
6 ~ ; 6 6  

o ~ , ~  
0 0 0 0  

o o o o o  6 6 6 6  
0 0~, 

~, 6 o cb 0 

' ~  ~ ~ N N N N  

"~ ~ ~ - -  ~ . ~ .  

• ~ ~ ~ ¢',1 t"-- ~ m 

~ "~ " [-  6 6 6 6  

o " ~ 
6 6 c b 6  

~ o  ° o - . ~  

- - . Z  ~ . ~ , ~ . ~ 4 .  
¢o , . -  i ~  

6 6 6 6  

0 0 0 0  

0 0 0 0  

0 0 0 0  

0 0 ~  

0 0 0 0  

6 6 6 6  

0 0 0 0  

0 
6 6 6 6  

6 6 6 6  

6 6 6 6  

o o 
6 6 6 6  

0 0 0 0  

6 6 6 6  

0 0 0 0  

0 0 ~  

0 0 0 0  

0 0 0 0  

6 6 6 6  

0 
6 6 6 6  

0 0 0 0  

I I o ~ o ~  

0 

6 6 6 6  
0 

6 6 6 6  

0 
& & & &  

~ m  

o o o o o o o  ~ . ~  

. . . . . .  9 

6 6 6 6 6 6 6  ~ 

6 6 6 6 6 6 6  ~ 

o o o o o o o  . ~  

?- 

6 6 6 6 6 6 6  ~.H ~ 

6 6 6 6 6 6 6  ~ 

6 6 ~ 6 6 6 6 ~ _  

6 6 6 6 6 6 6  ,.-= ~ 

6 6 6 6 6 6 6  o ~  

6 6 6 o 6 6 6  ~ >  

~ 6 6 6 6 6 6  ~ 

II 6 6 6 6 6 6 6  ~ 

o ~ 



362 R A G A - A  NEW TECHNIQUE OF STRUCTURE ANALYSIS 

not be followed up until very recently. The two- 
dimensional formalism developed earlier has been 
extended here to three dimensions. 

Since Y. IF(H)I in (3) is a constant, R is a function 
only of the variables m~, apart from the parameters 
resolution, B value etc., which are assumed for each 
cycle of refinement. We try to find the values of 8m~ 
for which ~ AIF(H) I becomes zero. Each AIF(H) I 
can be expressed in terms of 8mi as in (4) for the 
index n(H) of the reflections running from 1 to the 
total number of reflections N. 

i max 

alF(a)l = ~ alG(H).________/I am,, n ( a ) =  1 to N. (4) 
i=l ami 

It also follows from (2) that 

alO(a)l 
- - - p ( H ,  i)= T(H) cos[O(H, i)-o~(H)], (5) 

ami 

where - - -  

T(H) =f~[(sin O)/A]exp{-B[(sin #)/h]  2} (6a) 

and 

O(H,i)=2~(H.r,).  (6b) 

The best values of 8mi (which a r e / m a x  in number) 
which will fit the N equations in (4) can be obtained 
by the standard least-squares procedure of forming 
the imax normal equations from (4). If we also include 
a suitably chosen weighting function w(H), this leads 
to 

~'. w(H)p(H, i)p(H, l)Sm, 
H 

= ~ w(H)p(H,/)AIF(H)I (7) 
H 

i, l = 1 to /max. 

This can be put in an elegant form, namely 
imax 

E q(l, i)Sm,= A(l) (8) 
i = l  

where 

and 

q(l, i ) = ~  w(H)p(H,l)p(H,i) (8a) 
H 

A(/) = ~  w(H)p(H, i)A(H). (8b) 
H 

So far the theory is straightforward, but in 
implementing (8), several precautions and restrictions 
have to be applied. Thus, in examples employing a 
grid with 11, I2 and /3 in the range 4-6, the total 
number of reflections (N) is not much larger than 
the total number of 8mi to be determined (namely 
/max), and the solution of (8) is best obtained by 
employing the diagonal approximation and a fudge 
factor A (--0.5) as in (9). 

8m,=AA(i)/q(i,i), i= l  to imax. (9) 

The weighting function w(H) may be put equal to 
IF(H)I for giving higher weights for stronger reflec- 
tions in the preliminary stages. Thus, the main sub- 
routine GRLS for the 'grid least-squares' refinement 
incorporating (3)-(9) leads for each cycle to the 
refined value 

m~ = mi + 8mi. (10) 

These are then pruned and normalized. In the 
pruning process, we make use of the fact that p is 
non-negative in X-ray diffraction, and therefore all 
negative m~ values are set to zero. These are then 
normalized to make Zm[ such that the total electron 
count for this G structure is the same as that for the 
actual F structure (by a subroutine named M- 
NORM) and also, if necessary, normalized once 
more by making Y~ IG(H)I2=Z IF(H)I 2 by the sub- 
routine G-NORM. 

An outline of the essential steps in the computer 
program RAGA2D incorporating the above ideas for 
two dimensions is shown in the flow chart in Fig. 1. 
In this, SFCALC incorporates (2) and GRLS (3)-(9). 

6 o Fig. 1. Flow chart of  the essential steps 
in the program RAGA2D for the 
technique RAGA applied to two- 
dimensional structures. 
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For any stage of any problem, the parameters artificial 
temperature factor (B), resolution (RESOL), weight- 
ing (W) and normalization (NORM) can be chosen 
at the discretion of the operator and any number of 
cycles of refinement can be carried out for each stage. 

Illustrative examples 

Even in 1983 it was found that RAGA had the 
property of reducing the R value (RVAL) between 
the structure amplitudes [F(H)I of the actual F struc- 
ture and [G(H)I of the approximated grid structure 
in succeeding iterations. This property was confirmed 
for a wide variety of F structures with a number of 
different input trial structures which were considered 
to provide the best conditions for applying RAGA. 
These checks were done only in two dimensions on 
a PC/AT, but they were sufficient to give an idea of 
the types of problems that are likely to be solvable 
by this new technique. Thus, it was found that if the 
F structure itself had atoms located at the grid points 
of the chosen grid, then many homometric solutions 
are possible for the G structure, each of which may 
have an RVAL as low as 0.01 to 0.02. However, such 
a feature is unlikely to exist with organic crystal 
structures having low symmetry and therefore the 
examples were confined to those having all the atoms 
at non-grid points. A choice of values from 4 to 6 for 
I] and 12 seems to be the most satisfactory one, and 
for these, the RESOL was varied in stages from one- 
third to one-sixth of the unit-cell dimension in three 
stages, e.g. with a = b = 6/~, "), = 90 °. For the triclinic 
cells chosen in the examples given below, the three 
stages would correspond to RESOL = 2.0, B = 30 ,~2, 
RESOL=I .5 ,  B=20/~2  and RESOL=I .0 ,  B =  
10 A 2. 

The choice of the initially chosen input G structure 
is also quite arbitrary. Thus, it could be (a) an 
arbitrarily chosen set of random mi values or (b) a 
single large atom at the centre of the unit cell with a 
relatively low flat background, or (c) with grid points 
over one half of the cell made to have the same finite 
rni value and the other half to have mi = 0, and so 
on. The results were not successful in every case but 
fragments of the real structure could be seen, as in 
the case of direct methods. 

However, some striking successes were obtained 
by refining from a featureless flat input for m~. An 
example is shown in Fig. 2 and Table 1, for which 
rn~ was initially made equal to 0.41 for all i = 1 to 25. 
When this featureless input was fed along with the 
IF(hkl)l data of the actual F structure shown in Fig. 
2(a), it developed the four atoms of the F structure 
in approximately the correct locations in the unit cell, 
and these became progressively larger in mi value 
until they were clearly defined as the only four atoms 
in the unit cell as shown in Fig. 2(b). However, as 
expected, the origin was not at the same place as in 

Fig. 2(a) and the molecule was also found to be 
rotated as it developed by 180 ° with respect to that 
of the F structure, about an axis at right angles to 
the plane of the paper. In Fig. 2(c) this has been 
subjected to a linear transformation so as to have 
nearly the same location and orientation as that in 
Fig. 2(a). It can be seen that these two are very similar, 

(a) 

Y 

3 

(b) 

(c) 

Fig. 2. Electron-density contour diagrams of the four-atom struc- 
ture (a) developed by RAGA from a completely flat background, 
(b) is the structure as revealed and (c) is the same structure 
after application of inversion (rotation by 180 ° ) and translation 
to bring it to the same orientation as (a). Contours are at the 
levels of 20, 40, 60 in arbitrary units, and are the same for all 
the diagrams. 



Ramachandran (1964) for a systematic treatment]. It 
had been shown by Kalyanaraman, Parthasarathy & 
Ramachandran (1969) that the undesirable peaks in 
the fl synthesis are mostly eliminated by using the 
Sire weighting function (Sim, 1960), which is given by 

and the clarity and near equality of the four atoms 
that have developed in Fig. 2(c) are quite striking. 

The progress of the refinement is seen from Table 
1, which shows not only a continuous reduction of 
R value for all the three stages (which were chosen 
in this example to have the same resolution 1.0 but 
having different B values of 30, 20, 10 Aft), but also 
a similar behaviour for DMI, the mean relative change 
in mi, which also comes down with successive cycles 
of iteration in each stage taking as low a value as 
0.04. Naturally, there is an upward jump in both 
RVAL and DMI when a new stage is initiated by 
changing the parameters B, RESOL etc., for 
refinement. 

The very low value of DMI at the end of the sixth 
cycle in the third stage is a clear indication that the 
refinement has converged (though in some other 
examples it converges only to a partially correct 
structure). 

The second illustration in Fig. 3 and Table 2 is that 
of another useful property of RAGA, namely for 
refinement at intermediate levels of structure analysis, 
when some atoms have been recognized and other 
atoms are absent. The normal procedure in such cases 
is to employ Fourier refinement. However, if the input 
G structure is made that of the partially known F 
structure, which we may denote by Fp, then the 
RAGA refinement has the property of developing the 
atom(s) at the unknown atomic sites (which we may 
denote by FQ). In the example illustrated in Fig. 3, 
the three atoms 1, 2, 3 shown in Fig. 3(a) were taken 
to be known and the fourth atom 4 to be unknown. 
The former were given mi values of 2.0 as in Table 
2(a) and on applying RAGA for three stages (12 
cycles), as for Table 1, the outputs of the three stages 
were those indicated in Tables 2(b), (c) and (d). It 
will be seen that the mi value at the fourth location 
continuously increases with its stage. In fact, the 
electron-density contour diagram for the final output 
is illustrated in Fig. 3(a), and it will be seen that a 
fairly good atom has appeared at location 4, corre- 
sponding to the unknown atom. (Incidentally, it was 
also verified during our study that if a wrong atom 
was put in after a non-centrosymmetric group of 
correct atoms has been identified, the mi values of 
these wrong atoms go down in the succeeding cycles 
of refinement using RAGA.) 

The power of RAGA in Fig. 3(a) is brought out 
particularly well by comparing it with Fig. 3(b) which 
is the result of a standard Fourier refinement using 
7 '=  IF(H) I exp iap(H) with the same assumptions as 
in Fig. 3(a) [see Ramachandran (1964) for the 
definition of 3" synthesis]. It will be seen that although 
atom 4 has developed, it is not at all as clear as the 
results obtained with RAGA. 

In connection with this, it was also thought 
worthwhile to verify the power of the fl synthesis first 
proposed by Ramachandran & Raman (1956) [see 

W= I,(2X)/ Io(2X), 

(a) 

(11a) 

D 

X--IF[IFp[/~,f~j, ( l l b )  

where 

0 

D 
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(b) 

(c) 

Fig. 3. Development of atom 4 from the partial information regard- 
ing atoms 1, 2 and 3 by three different techniques; (a) RAGA, 
(b) Fourier synthesis and (c) W2fl synthesis (RESOL= 1.0, 
B= 10/~ 2, a = b=6.~, 7=90  °, symmetry P1). [Contours as in 
Fig. 2, at the same levels for (a), (b) and (c).] 
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Table 2. Refinement of a structure employing RAGA from the partial data shown in (a) 

(a) Input partial structure (b) Output of  first stage 

0-000 0.000 0.000 0.000 0.000 0.228 0.213 0.114 0.059 0.107 
0.000 0.000 0.000 0.000 2.000 0.013 0-000 0.012 0.000 2.128 
0.000 0.000 2.000 0.000 0.000 0.000 0.000 2.075 0.000 0.000 
0.000 0.000 0.000 0.000 2.000 0.000 0.195 0.139 0.000 1.945 
0.000 0.000 0.000 0.000 0.000 0.227 0.364 0.182 0.000 0.000 

(c) Output of second stage (d) Output of  third stage 

0.141 0.140 0.050 0.000 0.021 0.000 0.000 0.000 0.000 0.000 
0.381 0-028 0-166 0-000 1-944 0-199 0-041 . 0.164 0.000 2.356 
0.000 0.000 1.652 0.000 0.000 0.000 0.000 1.799 0.000 0.000 
0.000 0.360 0.417 0.000 1.626 0.000 0.214 0.136 0.000 1.693 
0.248 0.639 0.183 0.000 0.004 0-074 1.148 0.175 0-000 0.000 

The outputs'of the three stages are tabulated as 5 x 5 grids in (b), (c) and (d). Note that the three input atoms continue to have large mi (~2.0), while 
there is a continual increase in the value of ml at the location of the unknown atom as shown by the rules. 

in the form 

w2H = W2(IFl=/If PI) exp iap. ( l lc )  

This function was tested in the example studied 
here and the resulting diagram, shown in Fig. 3(c), 
is very interesting. It brings out the peak at the loca- 
tion of the unknown atom 4 in a very distinctive way 
with a peak height comparable to those of the known 
input atoms 1, 2 and 3. 

Thus RAGA appears to be a procedure that should 
be investigated further and checked for its capabilities 
not only in revealing preliminary data about non- 
centrosymmetric equal-atom structures at the initial 
stages of crystal structure analysis, but also for its 
application at intermediate stages where these data 
are developed further to identify more atoms at rela- 
tively low resolution. It is our conviction that RAGA 
deserves further scrutiny and examination with struc- 
tures in three dimensions where it would be expected 
to have greater power, provided the computational 
aspects are properly taken care of. 

The author wishes to acknowledge the excellent 
computational assistance that was provided by Mr 
Ravi Upadhyaya, who implemented all these studies 
on a PC/AT. The work was carried out during the 
author's tenure of the Indian National Science 
Academy Albert Einstein Professorship at the Indian 
Institute of Science. The latter provided him with the 
personal computer. Thanks are due both to INSA 

and IISc for finances, equipment and other facilities 
provided. 
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